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Abstract

I was tasked with designing and implementing a persistent associative array mapping names to arbi-
trary data—i.e. a single-directory filesystem, often called a blobstore—using the Nordic Semiconductor
nRF52840 SoC and two Winbond W25N01GV gigabit SLC NAND chips. The contract also required
necessary QSPI drivers. The requirements permitted 4KB of RAM, allowed no use of other persistent
storage, and mandated a fully asynchronous API running on “bare metal” (no OS, realtime or other-
wise). I detail my resulting deliverable, pnandfs, and demonstrate its generally performant and robust
fulfillment of these specs. I also describe its pathological worst case behaviors.

1 Introduction

The client’s initial request was simply “a filesystem on the nRF52840 using two W25N01GV NANDs, plus
any necessary drivers, plus an entirely asynchronous C++ API, in as little RAM as possible”. Refinement of
these requirements determined that:

Most files would be on the order of 1KB, with a few files on the order of tens of megabytes. These
larger files would grow over time, via substantial (page-sized) appends.

It was not thought necessary to have directories, nor links (either hard or symbolic), but it must be
possible to remove files, reclaiming both their space and name.

It must be possible to have multiple files open at once, but it is not necessary that a single file support
multiple open handles. Writing to a file need not be visible to an existing reader.

No more than 4KB of RAM was to be consumed, and ideally not more than 2KB would be persistently
consumed. Callers could be required to supply an additional 2KB for the duration of their operation.

Wear-leveling must be as close to uniform as possible. Ideally, no block would be erased two times
more than any other block. Robustness in general is at a premium.

The nRF52840[[LG] SoC pairs an ARM Cortex-M4F with 1MB of NOR flash and 256KB of RAM, along
with a wealth of interconnection capabilities. This storage is shared with the “S140 SoftDevice”[17], a
closed-source BlueTooth stack, which consumes slightly more than 100KB of RAM and significant flash.
Two Winbond W25N01GV[3] 128MB NANDs, each capable of QSPI at up to 104MHz, were added to the
PCB. One QSPI and three SPI masters are available, each clocked at 32MHz_(ignoring overhead, 32MHz
QSPI moves an ideal 16MB/s, SPI a respectable 4MB/s). Nordic’s nRF5 SDK][[14] version 15.3.0 was linked
into our binary, and the DUT was probed via 10-pin J-Link[6] connection from an nRF52-DK][15].

*Dirty South Supercomputing on behalf of Vakaros of Atlanta, GA.
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2 Details of NAND flash

NAND flash—typically packaged as a collection of chips, and often managed via an on-board controller—
makes up the majority of modern solid state drives, flash drives, and memory cards. It is cheaper and denser
than NOR flash, faster than spinning disk, much faster than EEPROMSs, but typically less reliable than any
of the three. There are severe constraints on how it can be used: a chip of NAND flash is divided into some
number of blocks, which are themselves divided into pages. Erasing a block changes all bits within to 1s=.
Data can be written a page at a time within a block, but usually only in ascending page order—out-of-order
page programming can upset data in adjacent wordlines (a “program interference®[l]). Data can be read a
page at a time from anywhere within the block, but reading a page too many times can upset data in an
adjacent page (a “read disturb”[2]). SLC NAND flash stores one bit per cell, and blocks can be erased on
the order of 10° times. MLC and TLC variants encode more bits per cell, and can be reliably erased far
fewer times (they also tend to be slower, and to require more ECC bits per data bit). As a block wears
out, programming time will decrease, while erase latency increases[]. Finally, it is common for MLC and
TLC NAND to exhibit “fast pages” and “slow pages”, but this arises from the distribution of bits within a
multilevel cell to different pages, and thus does not affect SLC NANDIJ7] such as our Winbond.

2.1 Details of the Winbond W25N01GV

The VVQE)NOlGVXXIG/ITE is organized as 210 blocks of 2° 2KB pages each (2'7 bytes per block), for a total
of 216 pages and 227 data bytes (128MB). Blocks must be erased before their pages can be programmed with
0s, and pages must be programmed in ascending order. A page may be read from any block at any time. In
addition to the 2KB of data, each page has a 64 byte “Spare Area”, primarily used for hardware-managed
ECCE, but offering 16 ECC-protected bytes (in 4 discontiguous 4-byte chunks) for our use. A bad block
mapper (BBM) of 20 LUTS is at our disposal, providing transparent remapping of block addresses. Finally,
there are 10 “One-Time Program” pages, which can be written to only once.

Block erasure operations can fail, setting the FAIL-E bit; likewise page programming and FAIL-P. Both
of these bits are reset when the next operation is started. Page read operations that fail their ECC check
result in one or more ECC-CE error bits being set. These error bits remain high until the chip is reset. Most
operations set the BUSY bit, and only when this bit goes low is it safe to consider an operation completed.

2.2 Interactions with the nRF52840

The Winbond’s command set bears no resemblance to the ONFI standard[g], so there’s no need to learn the
latter. Unfortunately, it also differs wildly from that supported by the nRF52840’s QSPI interface. Extensive
use of the CINSTR “custom instruction” facility was needed, but eventually full-speed communication was had
over QSPI with the two NANDs. Alas, the Nordic unit can only deal with pages of either 256 or 512 bytes.
Using the maximum 512 byte setting, the last 512 bytes written anywhere in the page would be returned for
subsequent reads from the page of any length. Eventually, it was confirmed with Nordic support that their
QSPI controller simply can’t drive a 2KB page for more than 25% of its capacity. A bit-banging approach,
were it even possible to do robustly, would consume far too many CPU cycles (remember, all interfaces
were to be asynchronous). Faced with either a 75% reduction in speed or a 75% reduction in capacity, the
clients chose to retain capacity, and we moved to the SPI interfaces. Note that hanging both chips off the
QSPI interface meant that only one would be used at a time (aside from a mirrored configuration employing
“superblocks”[[L1]), but placing the two on distinct SPI interfaces allows for parallelism. Full, concurrent
utilization of both SPIs would represent 50% of the original QSPI throughput.

INothing about the NAND memory cell itself—floating-gate MOSFETs connected in series—requires large-scale operations.
Larger blocks mean faster operations (per bit), cheaper chips, and less power draw...plus amplified errors, and reduced flexibility.

2The “xx” is a package code, one of ZE (WSON), SF (SOIC), or TB/TC (TFBGA). IG/IT differentiates between devices
which reset into “continuous mode” or “buffered mode”. We always use the (default) buffered mode on our IGs.

3Those who long to live dangerously can disable hardware ECC. We don’t.
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3 Blobstore API

I had some ideas regarding the internal design, taking inspiration from classic work on log-structured
ﬁlesystems[@], particularly as implemented in NAND-focused projects such as FQFS[E], JFFS2[@], and
YAFFS[@]. At the same time, I wanted a simpler scheme, one implementable in 2KB of RAM, by one
engineer, in four weeks of part-time work. These ideas informed the proposed API, which happily ended up
pretty well-suited to the final implementation.

constexpr size_t BLOB_NAME_MAXLEN = 58; // Including mandatory NUL byte!
constexpr auto NAND_PAGE_DATABYTES = 2048u;

constexpr auto NAND_PAGE_SPAREBYTES = 64u;

constexpr auto NAND_PAGE_SIZE = NAND_PAGE_DATABYTES + NAND_PAGE_SPAREBYTES;

using blob_t = uint64_t;

using NANDPage = std::array<uint8_t, NAND_PAGE_SIZE>;
using Handler = void(*)(void *, int);

using FSCallback = void(*)(void*, blob_t, size_t);
using FSCtx = std::pair<FSCallback, voidx>;

class VK_FS {
static int Format(Handler fxn, void* vctx, NANDDev* nand);
template<class It> int Init(Handler fxn, void* vctx, It begin, It end, bool mirror);
int Fsck(Handler fxn, voidx vctx, bool checkdata);
// flags include BLOB_CREAT, BLOB_EXCL, and BLOB_KILL
blob_t OpenBlob(const std::string& name, unsigned flags, const FSCtx& ctx);
blob_t ExtendBlob(blob_t blob, const void* buf, size_t len, const FSCtx& ctx, NANDPage& scratch);
blob_t ReadBlob(blob_t blob, void* buf, size_t len, unsigned offset, const FSCtx& ctx, NANDPage& scratch);
blob_t Bloblen(blob_t blob, const FSCtx& ctx, NANDPage& scratch);
blob_t CloseBlob(blob_t blob, const FSCtx& ctx);
blob_t ReplaceNamedBlob(const std::string& name, const voidx buf, size_t len, const FSCtx& ctx);
blob_t RemoveNamedBlob(const std::string& name, const void* buf, size_t len, const FSCtx& ctx);
blob_t ListBlobs(blob_t blob, const FSCtx& ctx, NANDPage& scratch);
blob_t Sync(const FSCtx& ctx);
int Reset();

Li1sTING 1: Public API (NANDDev defines CS pin and SPI device)

A NANDDev is a small structure, often constexpr, tying together a SPI master identifier and a Chip Select
line (numerous slaves can be connected to a single SPT master, and selected via this line). The same NANDDev
must not be provided to two VK_FS objects. To Format a NANDDev is simply to erase all of its blocks, restoring
all bits to their default 1. Init is handed one or more NANDDevs, and the boolean mirror (if false, the NANDs
are put in linear combination). All specified devices must be freshly formatted, or they must make up an
existing filesystem (by virtue of having previously been fed together to Init)#. If Init is able to recognize
the devices, it calls back with success, and the object can be used until a call to Reset.

Functions will generally return BLOBD_EINPROGRESS, and call back asynchronously with the true handle.
Callers must be prepared for an immediate return, however, in which case no callback will be invoked. The
proper idiom is thus typically to invoke the function, check if the result is BLOBD_EINPROGRESS, and if not,
directly invoke the callback from the original callsite. The primary handle provided to callers is the blob_tH.
This 64-bit value is opaque to callers except through the following two functions:

4In most mirrors, we’d want to be able to add a replacement device, but that won’t be happening with our PCB in the field.
5We encode all handle state in the blob_t, held by the client. “File descriptors” imply space proportional to the number of
open handles, a luxury we’re not afforded.
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// Returns true iff the blob_t is an error code
static inline bool BlobErrorP(blob_t code) {
return code & 0x3ul;

}

// Errors can be any arbitrary distinct blob_t with a 1 in the LSB. Each of

// these is all 1s, except for one low bit (for differentiation).

constexpr blob_t BLOBD_EINPROGRESS = ~(@x1u << 22); // request not yet complete

constexpr blob_t BLOBD_EIO = ~(@x1u << 23); // error talking to device

constexpr blob_t BLOBD_ENOSPC = ~(0x1u << 24); // no room to write

constexpr blob_t BLOBD_ENOENT = ~(@x1u << 25); // no BLOB_CREAT, but blob did not exist

constexpr blob_t BLOBD_ENAMETOOLONG = ~(@x1u << 26); // no NUL in 58 bytes of name

constexpr blob_t BLOBD_EINVAL = ~(@x1u << 27); // bad flags or invalid blobd or invalid read length
constexpr blob_t BLOBD_EEXIST = ~(@x1u << 28); // blob existed with BLOB_EXCL

constexpr blob_t BLOBD_INVALID = ~Qul; // generic error

static inline const charx BlobStrerror(blob_t res) {
switch(res){
case BLOBD_EINPROGRESS: return strerror(EINPROGRESS);
case BLOBD_EIO: return strerror(EIO);
case BLOBD_ENOSPC: return strerror(ENOSPC);
case BLOBD_ENOENT: return strerror (ENOENT);
case BLOBD_ENAMETOOLONG: return strerror (ENAMETOOLONG);
case BLOBD_EINVAL: return strerror(EINVAL);
case BLOBD_EEXIST: return strerror(EEXIST);
case BLOBD_INVALID: [[fallthroughl];
default:
if (BlobErrorP(res)){
return "Unknown unandfs error”;
Yelse{
return strerror(0);

}

LisTING 2: Functionality for inspecting blob_t

OpenBlob searches for the specified name, and then functions according to the provided flags. If BLOB_CREAT
is provided, the blob will be created if it does not yet exist (without BLOB_CREAT, BLOBD_ENOENT would be
returned). If BLOB_EXCL is provided (providing BLOB_EXCL without BLOB_CREAT results in BLOBD_EINVAL), the
blob must not exist, or BLOBD_EEXIST will be returned. If BLOB_KILL is provided (providing BLOB_KILL with
BLOB_CREAT results in BLOBD_EINVAL), the blob will be removed if it exists (otherwise, BLOBD_ENOENT is returned).
All other errors can also occur with these functions. The handle can now be used in calls to ReadBlob,
ExtendBlob, Bloblen, and CloseBlob. Behavior is undefined if the blob is modified through another handle
or function. Failure to call CloseBlob does not cause a resource leak, but timely use of CloseBlob can result
in fewer wasted NAND pages.

ExtendBlob adds up to a page worth of data to the blob. The callback specifies a new handle which should
be used for further extensions (extending again on the same blob will replace the extended data). No matter
the extension’s length, a full page will be consumed for the data, plus an inode (3—12 of a page) to describe
the data page; it is thus desirable for callers to buffer a full page worth of output. A blob can grow as large
as 224 — 1 bytes (16MB; this is the sum of actual data, not consumed pages). Note that other handles will
not be updated; it is not possible for a reader to notice the new data save by calling OpenBlob anew. The
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amount written is returned as the third argument to the callback.

ReadBlob allows up to a page worth of data to be read from the blob, at the specified offset. If the requested
amount of data is not available, a short read will be returned as the third argument to the callback. Bloblen
gets the length of the blob through this handle (again, concurrent extensions will not be visible). CloseBlob
hints that no more extensions will be performed through this handle.

RemoveNamedBlob and ReplaceNamedBlob skip the name lookup procedure, forcefully seizing the name and
either marking it dead, or initializing it with up to one page of data. Extending a handle which has been
Removed or Replaced leads to frightful shenanigans (typically, the old blob will “return from the grave”).

ListBlobs ought first be called with BLOBD_INVALID. It will populate scratch with between 1 and 31 blob
names and lengths, and return a nonce blob_t. This can be used in a subsequent call, which will return a
new nonce, and a new set of blob names and lengths. Eventually, BLOBD_ENOENT will be returned, and all
blobs will have been enumerated. I have not bothered to include the functions for extracting these data.

Sync ought be called prior to Reset or process exit. Any metadata not yet written to NAND will be
flushed. Calling Sync can waste up to 62 pages, so do it only when necessary. Failure to call Sync can
currently result in up to 61 pages being lost. Fsck can be used to perform an intensive validation of the
filesystem, requiring a read of every metadata page (3% of the pages). If checkdata is true, Fsck will read
every page of the NAND, looking for ECC errors. In the absence of any other load, this requires roughly
42s per NAND.

All of these functions can involve some asynchronous I/O. In the best case, necessary information is
readily available in the active metadata, and the return is immediate. Extending a blob can result in up to
two pages being written out in the active block, and a full block copy if space needed to be found in a used
block (but will usually result in one page being written). In the worst case, where the named blob does not
exist on a full NAND, a name lookup requires reading every metadata page. Creating (or removing) a file
usually leads to no I/O, but in the worst case leads to a page being written out followed by a block copy.
Reading a blob requires traversing some number of metadata pages; in the worst case, where a blob has
grown fat off partial writes, this could again require reading every metadata page (see Section ff for plans on
improving this linear behavior on reads).

BLOB_NAME_MAXLEN is derived from filesystem internals, as we shall now see.

4 Filesystem design

I knew I wanted to provide at least a few dozen bytes’ worth of name per blob. I knew 16 bits of blob length
were too little, and 32 bits too much. I considered metadata compression, and said “no” to madness.

I knew I wanted to march purely forward writing within a chip—i.e., in addition to the mandatory
in-order programming of pages, I hoped to erase blocks in order, with no special meaning for any given
block. Any such scheme is guaranteed perfectly uniform wear leveling, and should require minimal statet. T
considered bundling metadata with data. Such a scheme would be very flexible; I could write the metadata
length and true length into the Spare Area, grow the data up from the bottom and the metadata down from
the top, and have type-tagged metadata tuned to the particular blob. I could even pack multiple small blobs
into a single page. Unless I wanted to buffer data across calls there was no way for a caller to know how
much data to optimally pass with variable-length, in-page metadata. Buffering would require RAM linear
with the number of incomplete writes, though, so it was out. Metadata and data would live on different
pages, and I’d burn my allotted 2KB building up the next metadata page in memory.

A problem presented itself, however: how would I determine state on initialization? As noted above, if I
persisted my state to a known location, those locations would see significant wear. Under the mixed pages
plan, every page had identifiable metadata, and that metadata could carry a decreasing nonce. Find the
discontinuity in nonces, and you’ve found your active page (more on this momentarily). By placing metadata
pages at the 32nd and 64th page of each block, nonces can be recorded in these pages only, and the same
O(logn) algorithm performed (on 3% as many pages). I call these 32-page regions zones. This yielded up a
natural 64-byte fixed inode size for each of the 31 previous pages, plus 64 bytes for zone metadata. Three
bytes were dedicated to “blob length through this inode”, two bytes to “previous data page” (the data page

61 knew that any frequently-changing state couldn’t be persisted without either redundancy or special-purpose blocks.
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governed by an inode can be derived in O(1), as can the inode corresponding to a data page), and one byte
to a status bitfield. The remaining 58 bytes became BLOB_NAME_MAXLENY,
We define a few useful functions before proceeding:

constexpr size_t INODE_SIZE = 64;

static_assert (NAND_PAGE_DATABYTES % INODE_SIZE == 0);

constexpr auto PAGES_PER_ZONE = NAND_PAGE_DATABYTES / INODE_SIZE;
static_assert(PAGES_PER_ZONE > 1 && ((PAGES_PER_ZONE & (PAGES_PER_ZONE - 1)) == 0);
constexpr auto DATA_PAGES_PER_ZONE = PAGES_PER_ZONE - 1;

constexpr auto LAST_METADATA_PAGE = NAND_BLOCK_COUNT - 1;

static inline unsigned // Given a raw page, return its associated metadata page and zidx
MetadataForPage(unsigned pidx, unsigned* zidx) {
if(zidx){
*zidx = pidx % PAGES_PER_ZONE;
}
return pidx | DATA_PAGES_PER_ZONE;

static inline unsigned // Given a metadata page and inode number, return described page
PageMetadataOwns(unsigned pidx, unsigned zidx) {

return (pidx & ~DATA_PAGES_PER_ZONE) + zidx;
}

static inline unsigned // Return metadata page of next zone
NextMetadataPage(unsigned pidx) {

pidx = MetadataForPage(pidx, nullptr);

return (pidx == LAST_METADATA_PAGE) ? DATA_PAGES_PER_ZONE : pidx + PAGES_PER_ZONE;

static inline unsigned // Return metatdata page of previous zone
PrevMetadataPage(unsigned pidx) {

pidx = MetadataForPage(pidx, nullptr);

return (pidx == DATA_PAGES_PER_ZONE) ? LAST_METADATA_PAGE : pidx - PAGES_PER_ZONE;
}

static inline unsigned // Return epoch corresponding to nonce
EpochForNonce(uin32_t nonce) {
return ((uint64_t)oxffffffffull - nonce + NAND_BLOCK_COUNT - 1) / NAND_BLOCK_COUNT;

}

LisTING 3: Functionality for navigating data and metadata pages, all O(1)

"Metadata placed flexibly, only when appropriate for recent I/O, could be more efficient than periodic metadata with a
fixed inode size (fewer pages used for metadata, fewer pages needing reading to describe a given file). Metadata and arbitrary
data pages could be differentiated via a single bit in the Spare Area. Finding the metadata page describing a given data page
becomes O(logn) as opposed to O(1).
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POx0000 | ...6 pages... | POx0007

Zone O [p0x0008 | ...6 pages.... | POx000F _—
32 pages POX0020 (100)|...6 inodes... [ POx0027 (108)
64KB

POx0010 | ...6 pages... | POx0017
P0x0028 (109) | ...6 inodes... || POX002f (115
POX0018 |[...6 pages... | POxOOLf X 109 inodes X 1%
— P0x0030 (116) | ...6 inodes... || POx0037 (123)
POx0038 (124)||...6 inodes... [ Zone map

POx0020 | ...6 pages... | POx0027
Zone 1

35 pages [0028 |. .6 pages... | POXOO2A Page Ox003f (2,048 bytes, 31 inodes)
6dKB [[POx0030||...6 pages... | POx0037

POX0038 .6 pages... | POXOD3E Metadata page layout (2,048 MD pages total)
32 pages
64KB || POxtfdO||...6 pages... | POx{Td7

Page 31 and 63 of each block
POxffd8 |[...6 pages... | POxffdf

POxffe0])...6 pages.... | POxffe? _SByle(lB) PrevPage (2B) | IncomingLen (3B)

Zone | [poxffes][...6 pages... | POxffef

POxffcO||...6 pages... | POxffc7
Zone 0 ([poxfres |[...6 pages... | POxffer

32 pages . .
6#1131(%3 POXSFEO ||...6 pages... || POXfE7 SByte[7]: Killed / SByte[6]: Partial / Sbyte[5--0]: Reserved
PrevPage: 16-bit previous data page idx (self, if first inode)
POXITIS |...6 pages... | POXEHT IncomingLen: bytes prior to this inode (0, if first inode)
Block 1,023 (64 pages, 128KB) Inode (64 bytes, 31 per MD page)

W25NOIGV layout (1,024 blocks, 128MB)

FIGURE 1: Structure of chip, block, metadata page, and inode

4.1 Phased algorithm for block movement

That’s all well and good, but what becomes of our ineluctable march when we wrap around to the front
of the NAND, and can’t blow away live data? We sacrifice one block worth of capacity, designating it the
victim block. On first initialization, this is the last block. We keep a counter, initialized to 0 and increased
by 1 each time we erase the first block, designating it the epoch. Note that we can derive the epoch from a
nonce in O(1), and that epochs partition the nonce space.

Whenever our current block becomes the victim block (this won’t happen until the last block, but it
will happen every other zone afterwards), designate the subsequent block to be the Dunkirk block. Load the
Dunkirk block’s first zone’s metadata page as the working page. Beginning with the first inode, check to
see if it’s dead. If so, it doesn’t need rescuing; use its slot in the victim to write the next data page. If it is
live, copy it into the victim block to fight another day. Copy pages in bursts when appropriate, and when
the zone is complete, write metadata to the victim block. Repeat this with the second zone. Designate the
Dunkirk block the victim block, and start over.

This maintains perfect wear leveling, and ought even perform reasonably well when there are plenty of
deletions. But what about outstanding handles to the Dunkirk block? Their data just moved out from
underneath themB! Twenty bits in each blob_t are thus used to encode its origin epoch, i.e. the epoch at the
time of OpenBlob. If a blob_t is handed to us with our epoch, there’s no way it’s been moved. Otherwise, it has
been moved zero or more times; this can be computed in O(1), and applied to the incoming physical location
as an O(1) displacement modulo NAND_BLOCK_COUNT. This method also effects perfect data scmbbing[@], the
most effective solution for retention errors. In honor of minimalist composer Stephen Reich, I refer to this
movement of data as “phase music”.

4.2 Initialization algorithm

Knowing that freshly-formatted or otherwise erased blocks are all 1s, and knowing that we write a decreasing
nonce to each zone we write out, and knowing that we write zones in order, lower to higher numbers, a valid

8We don’t guarantee other writers to be reflected in readers, but we can’t very well go shifting the world around ourselves.
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pnandfs can take one of three forms:

e More than two zones have a nonce of all 1s, these zones are contiguous, and they include the last
zone. All other zones form a decreasing procession. The pnandfs is either freshly initialized, or was
interrupted in its first epoch. The current zone is the first zone with an all-1s nonce.

e FExactly one or two zones, within the same block, have a nonce of all 1s. All other zones form a
decreasing procession. The pnandfs was interrupted near the ends of its first epoch, or after erasing
the current block. The current zone is the first zone with an all-1s nonce.

o All zones form a decreasing procession, save for a single discontinuity, when the nonce increases by the
number of zones. The pnandfs, in at least its second epoch, was interrupted before erasing the current
block. The current zone is the zone with the greatest nonce.

If we’re not concerned with verifying these properties in full (that’s left to the optional Fsck), we can recover
the current zone in all three cases with a single O(logn) algorithm, one very much like binary search. First,
note that if we assume the remainder of the nonces to be in order, we can determine in O(1) whether a given
zone is the current zone: if its nonce is greater than the nonce of the previous zone, or if its nonce is all 1s
and it is the first zone, it can be considered the current zone (otherwise, if the previous nonce is not the
zone’s nonce plus 1, and either nonce is anything but all 1s, there is invalid metadata).

Read the nonces of the first, last, and (first + ((last - first) / 2)) zones. If last is first’s previous zone
(as it will be on the first iteration), determine if the first zone is current (as it will be on the first iteration).
Otherwise, read first’s previous zone’s nonce, and perform the same decision. If not, get the middle zone’s
previous zone (which might be first), and determine if the middle zone is current. If not, get the last zone’s
previous zone (which might be mid), and determine if the last zone is current. If none of the three were
current, one of three cases is true:

e Middle nonce was less than first nonce and last nonce. Set first zone equal to middle’s successor, and
last equal to last’s predecessor, and loop.

e Middle nonce was greater than first nonce and last nonce. Set first equal to first’s successor, and last
equal to middle’s predecessor, and loop.

e Anything else. Oh no look no, bad metadata, abandon ship.

In honor of Atlanta rappers the Ying-Yang Twins, I refer to this process as “Calling all Zonesa”.

last = prev(first)

readPage(m) GotLastNonce

All states can call back with error,

FIGURE 2: Initialize state machine

4.3 Name resolution and fast name operations

The chip might have any number of instances of a particular name on it, with pages in any order. Since
we’re always moving forwards through the chip, though, we can order events. Start by searching through any
active metadata, and then move backwards through metadata pages until hitting an all 1s nonce, coming
back to the starting point, or finding an inode with the name. The most recent inode of this epoch, if any
exist, must be the most recent inode, and the lookup is complete. If an inode is found which is not from this

91In truth, of course, we call only logarithmically many zones.
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epoch, it is possible that inodes ahead of us on the NAND have a newer, authoritative entry. Remember that
when shuffling pages from the Dunkirk block to the victim block, we must determine whether they’re live,
which requires determining the authoritative end of the blob. At that time, we write said end into the first
two bytes of the Spare Area. Since any inodes of a previous epoch behind us on the NAND must have been
copied, the most recently copied must have up-to-date information regarding the last inode of the blob (this
would not be true only if the blob had been extended since the copy, and any such inode would have been
found before the copied inode). Extensions always write their own page address, since they are by definition
the authoritative, newest chunk of the blob.

If the authoritative inode is marked with the killed bit (MSB of the status byte), the blob must be
considered not present. It is not included in ListBlobs, can be opened with BLOB_EXCL, and cannot be opened
unless BLOB_CREAT is provided, and a new inode provisioned. In the case of a new blob, an entry must go
into the active metadata. If the active page is full, this implies the flush and shuffle described in Section

(referred to as the “asymptotic copy branch” in state machine diagramst®). OpenBlob does not return
success without having successfully provisioned an inode.

found in metadata

readPage(m)

readPage(m)

. metadata full
found in metadata v

asymptotic copy branch

exhausted metadata

FindBlobBottom

All states can call back with error.

FIGURE 3: FindBlob state machine

RemoveNamedBlob and ReplaceNamedBlob are both extremely simple once we have this model. They simply
call FindBlobFinal with BLOB_KILL and BLOB_CREAT, respectively. A new inode is created with the name,
pointing to its own data page as the previous page. This inode will be found before any previous inodes
of the same name. If necessary, creating this inode will flush the active page to disk, possibly provoking a
block rescue. ReplaceNamedBlob invokes ExtendBlob with the result. These are definitely the fastest ways to
modify the blobstore, as they waste no time absorbing the past.

4.4 Reading and extending blobs

Recall that the blob_t returned by OpenBlob encodes the most recent (i.e. last) inode (at the time of opening)
from the blob. This is a great place to be for appending, a great place for reading from small files (since
they are only one page), and a bad place for reading from the beginning of large files.

writePage(d)

ExtendBlobCarved

‘metadata full

metadata full

metadata accepts
Al states can call back with error,

FIGURE 4: ExtendBlob state machine

The extension case is simple. We acquire a fresh inode from the active page, and write its data page
(locking in the inode) immediately. The only exception is if our blob_t is of the present epoch, in the active

107'm unsure how the Hertzsprung-Russell diagram got caught up in this, but “asymptotic copy branch?” it is.
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zone, and its data page has not yet been written. In this case, no new inode is necessary, and we write out
the page. If a blob was created after this one was created, but before this extension, that other blob will be
“locked in” with an empty first page. This wastes a page, which we’d like to recover in the next epoch. For
that reason, when we extend a blob using a reference to its locked-in first page, the new inode is written as
if it’s the first inode of the blob—its PrevPage field will specify itself.

For the read case, the metadata associated with the data page (which might be the active metadata)
is first read. From this metadata we know the blob’s length prior to this inode, and whether the page is
a complete (2KB) write (the length written to the Spare Area is 11 bits, and thus not large enough to
represent a full 2KB write. We keep the 12th necessary bit here for an optimization, detailed momentarily.
The length written to the Spare Area is modulo 2'1). We continue back through the metadata until reaching
an IncomingLen less than or equal to the requested offset. The referenced data page is the earliest we need
to read for the request.

We would need keep a list of page indices to “come back through”, reading data pages of the blob in
order. This would require O(n) space on n inodes. For the worst case of a 2KB read made up of 2!! 1-byte
writes, this requires 4KB. Instead, we populate the read buffer in reverse. While moving backwards, we need
data from any data page where the inode’s IncomingLen plus the data page’s length is less than the read
request’s offset plus its own length (so long as the IncomingLen + length is greater than or equal to the read
request’s offset). We read up through the required data into the caller-provided scratch buffer, and copy it
into the request buffer. Not knowing the length of the actual data page (we must read the Spare Area to
know), we can’t read directly into the read buffertd. If the Partial bit is not set, however, we do know the
length to be 2KB, and can do a zero-copy read. Since multipage files are strongly encouraged to write full
pages, this optimization can be significant for such reads.

nnnnn

ReadBlobMDBottom

fisymptotic copy branch

All states can call back with error. All states can call back with error

FIGURE 5: ReadBlob, Format, Fsck, and Sync state machines

4.5 Irregular operations

Format erases each block in order. Its goal is to restore a NAND to a fresh state.

Fsck reads each metadata page in order. Its goal is to verify that the progression of nonces conforms
to the rules outlined in Section 1.2. There ought be zero, one, or two orderly processions downwards. One
discontinuity is allowed. The only other permitted progression is a series of uninitialized blocks at the top of
the NAND. It also ensures that all metadata pages can be read at least once without ECC errors. It could
obviously do more.

Sync flushes out metadata for the current block if any entries are present, advancing the current zone to
the first zone of the next block. This is currently necessary to avoid data loss on shutdown, though I have
ideas on how to eliminate it.

5 Future work

It is desirable to encode large files more efficiently. Currently, a file of the maximum 224 — 1 bytes requires
8192 inodes, and thus (in the best case) 530 pages of metadata, and attendant reads. When all of a zone is
a single blob, some different scheme ought be employed to encode this fact. Unfortunately, it’s unlikely that

1 Consider a 2KB read request from offset 0 of a single-byte blob. This byte must go to the beginning of the buffer, which is
easily accomplished, but we must return 1 to the caller, not 2. In order to read the 1, we must read the entire page, which
would blow out the provided buffer. And thus we copy. Two distinct reads—one for the data, one for the Spare Area—might
or might not be faster than a large copy here.
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such a write could ever be performed as a single ExtendBlob() operation, due to the RAM requirements of
such a buffer.

It is not currently possible to use the two chips in parallel as a single, unified blobstore. If placed
on distinct SPI masters, they can be used in parallel as two blobstores, or as a mirrored set. In any
configuration—even a single SPT master—they can be combined as a linear device. A unified 2Gbit namespace
accessible at 2x32MHz, however, is not yet possible. Mirrored sets could be implemented via superblocks
for maximum performance, requiring only a single SPI master. This would be especially advantageous if the
QSPI interface had been capable of driving the Winbonds.

An ECC failure reading a metadata page currently results in the blobstore being brought offline. Given
that ECC failures can often be recognized immediately after programming, metapages should probably be
read back following write, remapped using the BBM LUTs, and written anew. In any case, a more graceful
recovery seems desirable.

We might be able to handle shutdown without a call to Sync, at least for pages which actually wrote out
data. The difficulty is twofold: we must be able to recover the name for newly-created blobs (where would
this be kept?), and we must be able to absolutely distinguish written pages from random garbage. This last
requirement would be impossible, except that the user doesn’t control the Spare Area. By writing the epoch
into the Spare Area, we can be pretty well assured that we actually wrote the page.

There are surely forty thousand ways in which this design could be improved.

The implementation seems pretty solid, for whatever that’s worth.

6 Closing words

A few weeks before receiving this contract, I (in a shameless rip-off of Douglas Coupland’s Microserfs[d])
remarked plaintively to my wife, “I'm 38. I've done everything you can do on a computer. Well, I've never
designed a filesystem.” I appreciate the opportunity to correct that deficiency.

I hope this writeup was informative! Hack on!

Dirty South Supercomputing. Soak more cycles. Burn fewer dinosaurs.
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