DSSCAW Technical Report #001

Give. Sympathize. Control.
Subverting the GZM48S Lawnmower via CAN*

Nick Black, Consulting Scientist
nickblack@linux.com

January 1, 2020

Abstract
I accessed the CAN (Controller Area Network) bus of the Greenworks Commercial Stand-On Mower
(GZM48S). This CAN network was sniffed as various controls were manipulated. I analyzed the various
CAN messages. I verified that, using my derived model of the CAN network, messages injected into the
CAN bus had physical effects on the mower. I finally propose further steps necessary to reliably and
smoothly control the mower from a ROS software stack.

1 Introduction

The GZMA48S[6][[7] is an electric, lithium-ion lawnmower designed for a standing human operator. Greenzie
desires to autonomously drive this mower using their “Archer” ROS[[15] software stack. Rather than attempt
to mechanically manipulate the human controls, Dirty South Supercomputing was contracted to reverse
engineer the mower’s CAN bus, and determine whether the mower can be operated via CAN messages.

Sniffing the CAN bus revealed several dozen distinct CAN message IDs (CAN has no concept of source
or destination addresses, but all message types have a unique 11- or 29-bit identifier). CAN IDs are not
standardized across products, but by correlating the message types with various mower behaviors, it was
possible to derive a consistent model of the message semantics. Various messages were composed by hand
and injected into the CAN bus, with results including changes on the mower’s LED, interruption of expected
mower behaviors, and faulting the mower (requiring a power cycle).

It was not possible to initiate or maintain most motor effects via injected CAN messages, but this
is explainable given the presence of CAN message contention[l2]. ECUs (Electronic Control Units, the
various nodes on the CAN network) typically broadcast their messages regularly, often dozens of time per
second. When a message ID periodically sent by some ECU is injected by our stack, the ECU is likely to
contradict that message within a short time (on the order of milliseconds), too quickly for motors to reflect
the momentary engagement. It is not known whether this is the sole obstacle to controlling the motor with
our stack—it is possible that further controls restrict our CAN messages from controlling the motor and
blades. A plan for weapons-grade control is proposed, which I believe to be feasible.

2 Setup

The Greenworks Commercial GZM48S mower’s rear electrical area, when opened, reveals a male DE-9. This
interface seems wired according to §6.1 of the CiA 303-1[3] recommendation regarding the ISO_11898-2]l]
CAN specification (“D-SUB 9-pin connector”). The PEAK System PCAN-USB[{] IPEH-0020228 bridges a
corresponding female DE-9 to a USB 2.0 Type A, employing an NXP SJA1000[14] controller and an NXP
PCA82C251[13] transceiver. CAN buses are not guaranteed to be safe for hot-added devices; it is advised
to connect the PCAN to the bus only while the mower is powered offt.

*Dirty South Supercomputing on behalf of Greenzi¢ of Atlanta, GA.
IThis variant includes a TLP291 optocoupler.
2In practice, ensuring that GND is connected prior to Ve, should suffice.

https://www.dsscaw.com/
https://www.greenzie.com/

2.1 Host side DSSCAW Technical Report #001

2.1 Host side

The PCAN was connected to a Lenovo T580 laptop running a custom 5.1.3 Linux kernel and Arch’s version

2018.02.0-3 of the can-utils[L1] toolsH. 1t was recognized by the peak_usb kernel module, and verified as

having the current firmware (version 8.4). peak_usb is a SocketCAN driver, and results in a network-style

device e.g. can0. This device requires, at minimum, timing configuration. It was possible to sniff packets

without registered errors using the bitrate 125000 parameter to ip, indicating the CiA-recommended

timing[lL7] for a 125kbit/s networkll. At other rates (including 500 and 250kbit/s), we received only errors.
The following further options were applied to the interface:

o restart-ms 1: Renegotiate as quickly as possible if we enter the BUS-OFF error state.
e one-shot off: Retransmit on ACK failure.
e berr-reporting on: Enable error reporting IRQs.

We explicitly do not use triple-sampling on, listen-only on, nor £d on. See the “Questions” section
regarding FD. A series of captures were acquired on-site the Saturdays of 2018-05-11 and 2018-05-18. The
command used to generate the captures was:

candump -ta -a -1 -r$((1024 * 1024 * 8)) -D -d -1 can0,0:0,#FFFFFFFF

At least 500 packets were seen per second when the mower is powered on, rising as high as the 600s. These
logs can be replayed using canplayer either onto a virtual CAN device (for analysis with e.g. cansniffer)
or onto a physical CAN interface for injection. They are most easily viewed as ASCII text using log2asc.
All three programs are distributed as part of can-utils. While the dump was running, interface state and
statistics were monitored using:

watch -n2 ip -details -s 1 show canO

It is important to watch both RX and TX errors, as well as the CAN controller’s error state[l10]. A CAN
controller can be in one of three error states:

« ERROR-ACTIVE: The controller can transmit normally.
¢ ERROR-PASSIVE: The controller must wait longer to transmit, and may not send active error frames.
e« BUS-OFF: A conforming device must not transmit until renegotiated.

While the restart-ms 1 option will result in quick renegotiation, it is undesirable to enter this state,
and makes transmission impossible using most devices. Note that these error-containment mechanisms can
themselves be exploited as a DoS attack[5].

2.2 Mower side

With regards to the mower, we are most interested in the left and right steering control lever (each can
be independently placed in forward, backward, neutral, or the parked default), and the pressure sensor
underneath the operator’s stand. Without effort, both levers will spontaneously return to the disabled state,
and the platform will return to its original level. If any of these three inputs are not engaged, the unmodified
mower will not move. Of further interest are the drive speed switch, the blade speed switch, and the blade
engagement button. All three retain whatever state they’re placed in, and it is thus less critical to manage
them via the CAN bus.

3v2018.02.0 was current in both Arch and Debian Unstable at the time, though commits have been made since then.
4815 nominal bit time ¢p, 16 quanta per bit, 625ns time quantum tq, samplepoint at 14tq (7us).

2.2 Mower side

DSSCAW Technical Report #001

&
w
s
4
(a3}

Konw the digital display

No. lcon Meaning

1 T low drive speed

2 ﬁ high drive speed

3 L seat switch

4 left control lever

5 right control lever

6 PTO switch

7 the whole machine is OK

8 o need to restart

9 low blades speed

10 blade working

11 battery remaining capacity

12 Total hours |total working hours

13 Overall status |controller fault/ battery fault/ motor fault

14 Cutting hours [cutting hours
L left blade motor fault code
A master controller fault code

15 BMS battery fault code
R right blade motor fault code
B slave controller fault code
M middle blade motor fault code

Figure 1: GZM48S display[E], “Konw” sic.

It is possible to send the controller into a fault state (indicated by illumination of the key icon (8) above)
by injecting CAN frames. If this occurs, the mower must be power cycled using the key. It has not been
determined whether this condition can be worked around via CAN bus. There are several less critical faults,
unaccompanied by the key icon. Powering the mower on with the blade button engaged will boot into a

DSSCAW Technical Report #001

controller fault, as will disengaging the pressure sensor while the mower is operating. The leftmost three
icons of the “starting steps” (3-5 above) must be lit, or the mower will not move. The fourth icon (6) must
be lit, or engaging the blades button (“PTO switch”) will not start the blades.

The Owner’s Manual rewards a close inspection. The diagram and accompanying text suggest presence
of both a “master” and “slave” controller. The terms could suggest a failover protocol at work. CAN itself is
a multi-master protocol, but the CiA’s CANopen[{] higher-layer protocol does have a concept of masters and
slaves. Note that it is implied that the master speaks to the BMS (Battery Management System) and deck!
motor controllers, but that both the master and slave speak to the HPD. “KSI” pretty clearly means “Key
Switch Input”, but what’s an HPD? Human Protection Device? Searching for this term in a CAN/industrial
context pulls on a thread which unravels to suggest that our two drive controllers are Curtis 1234[8] AC
Induction Motor Controllers, eventually confirmed via visual inspectionH. The 1234 speaks CANopen, and
can be configured as a CANopen master or slave. Later use of the term “CAN NMT” would seem to refer
to CANopen’s Network Management Protocol, of which there is no concept in raw CAN. Indeed, we find
CANopen NMTs in the packet captures. Realizing this was a critical step in making sense of some of the
more complex CAN frames. Always study the documentation!

Figure 2: GZM48S electrics bay, and diagram of Curtis 1234. It’s a match!

3 Data and Interpretation

As described above, traffic was captured using candump. It was then analyzed using cansniffer, Savvy-
CAN[@], and bespoke tools.

3.1 CAN frames and semantics

CAN is a minimalist link protocol. An 11-bit ID is mandatory, though modern CAN networks support an
extended 29-bit ID. This ID applies to a message type; there is no concept of addressing in CAN. Logical 0 is
dominant over the recessive logical 1—if any node transmits 0 during a bit, all nodes will see 0. Nodes must
listen to the bus while transmitting, and if they read a 0 while sending 1, must consider it a TX error. This
does not apply while transmitting the ID, which is near the head of the frame. In this case, the node ought
simply stop transmitting, and consider the bus arbitrated away. Lower IDs thus have built-in priority over
higher ones in a compliant network. Each frame carries up to 8 bytes of payload. As noted earlier, there are
no “well-known” CAN IDs in the sense of e.g. TCP ports.

5“Deck” and “blades” are used in a weird metonymy throughout the manual.
6The mysterious HPD means “high pedal disable”, copied word-for-word from a Curtis manual.

3.2 The GZM48S CAN bus DSSCAW Technical Report #001

There is an element of support for single-message request-response in CAN, but the vast majority of
traffic tends to be unilateral broadcasting. More generally relevant is acknowledgement: towards the end
of the frame is an “ACK slot”. The transmitter must transmit 1 for this bit, while listeners ought transmit
0. If the transmitter does not read a 0, the message is unacknowledged, and should be retransmitted. It is
not generally possible to determine how many nodes on the network ACKed the message, only that at least
one did. It is finally important to know that, upon encountering an error while in the ERROR-ACTIVE
state, a node transmits the Active Error Frame, which will collide with any ongoing message (prompting a
cascade of secondary error frames from other ERROR-ACTIVE nodes)E.

3.2 The GZM48S CAN bus

The following 46 11-bit IDs were seen (not all were seen in all logs):

ID Len | ID Len | ID Len | ID Len
1A6 | 8 1A8 | 8 1A9 | 8 1AA | 8
1AC | 8 224 | 8 225 | 8 226 8
228 | 8 229 8 22A | 8 22E | 8
2A6 | 8 2A8 | 4 2A9 | 4 2AA | 4
2AC | 8 301 8 302 | 8 303 8
304 | 8 305 8 306 |8 307 | 8
308 | 8 320 | 8 321 | 8 326 8
350 | 8 351 8 352 | 8 353 8
354 | 8 355 8 3AC | 8 HA8 | 8
5A9 | 8 5AA | 8 628 | 8 629 8
62A | 8 726 1 727 |1 728 1
729 |1 T2A |1

Already some patterns can be perceived. The same lower eight bits are seen in many IDs—AS8, A9, and
AA show up together, as do 28, 29, and 2A. All frames appear to have 8 bytes except for those prefixed with
7, which have 1 byte, and some prefixed with 2, which have 4 bytes. Remember that higher IDs have lower
priority. Given that the lowest priority messages have only a single byte, perhaps these are low-information
heartbeats? Inspecting the 7xx frames shows that they are all the same value (0x05), except upon boot. On
boot, they all show 0x7F. Together with a lack of any plausible prompting (why would larger messages having
higher priority be used to request such short ones?), this could indeed possibly be either two request-response
heartbeats, or four unilateral ones.

= Detailed Frame Information Frame IDs: (39 unique ids) Details Bit Histograph
Frame IDs: (52 unique ids) Details: Bit Histograph | lox1a6 oin .
0x1A8 = £
0x20000004 <1[1 E D: 0x301 400
0x224 - ID: 0x306 50] M*:“ # of frames: 456 2 a0
0x225 # of frames: 53 o 40 OxLAA Data Length: 8 g 300
ot Data Length: 8 g 3 OxIAC Average inter-fiame... | & 200
0x228 Average inter-fra... 3 | 0x224 Minimum inter-fram g
0x229 Minimum inter-fra.... 2 20 0x225 Maximum inter-fram 100
0x22A Maximum inter-fra... 10 0x226 Inter-frame interval o
0x22E Inter-frame interv... o | 0x228 ~ Data Byte 0 0 10 20 30 40 50 60
O2AS - Data Byte 0 0 10 20 30 40 50 60 0x229 Changed bits: 0 gits
sl Changed bits: ... Bits 0x22A Range: 0x07 to 0
Range: OXE2 ... | oxz2E 0g Bytes Graph
0x2AA » Histogram Bytes Graph 0x2A6 » Data Byte 1
0R28C - Data Byte 1 0x2A8 + Data Byte 2 250
0x301 Changed bits: ... 250 OX2A9 ata Byte . Wi [
0x302 Range: I e » Data Byte 3 A 1
ge: 0x07 to... 2 |
Pt Rt 200 0x2AA » Data Byte 4 R T f] ‘l | | | ‘
0x304 + Data Byte 2 3 150 Ox2AC » DataByte 5 2 SOHTRETRN .r‘l T \‘ It
0x305 » Data Byte 3 g 0 | » Data Byte 6 £ 200 M !
Data Byte 4 . » Data Byte 7 ik 100 TS | ot h i
0x307 , Data Byte 5 50 0x303 » Bitfield Histogram sop VU | N 1
0x308 + Data Byte 6 ° 0x304 L A L
0x320 + Data Byte 7 0 10 20 30 40 50 0x305 0 10 200 300 400
0x321) Bitlield Histoaram Time 0x306 Time
0x326 — 0x307
e e Save details to file o 1 2 3 a 7 i = Save details to file 0o 1 2 3

Figure 3: Frame data analysis of two IDs using SavvyCAN.
What’s going on in the left is pretty obvious. The right, not so much.

7A request is a “Remote Frame”. A broadcast—unilateral or requested—is a “Data Frame”.
8The active error frame is 6 dominant bits followed by 8 recessive bits. Due to the use of non-return-to-zero line coding with
a length of 5, six clocks of 0 are guaranteed to provoke the “bit stuffing” error on compliant, operating nodes.

3.2 The GZM48S CAN bus

DSSCAW Technical Report #001

In the case of 0x306, we see a lower-order byte rising in exact, visibly-recognizable synchronization with
time. When it reaches its maximum, it resets, and a higher-order byte increases, yielding a fractal sawtooth.
This can be nothing but a monotonically increasing counter, and its wide domain suggests it to be a clock.
We verify that it is persistent across runs, and identify it as the source of “total hours”.

Frame IDs: (39 unique ids) Details: Bit Histograph Frame IDs: (39 unique ids) Details: Bit Histograph
Ox1A6][0x1A6 1
gxlAg + ID: OXLAA 2000 - gxl#\g + ID: 0x225
LA XA
1500 0x1na

O0x1AC
0x224
0x225
0x226
0x228
0x229
0x22A

1000

Instances

0 10

20 30

Bits

0x1AC
0x224

0x226
0x228
0x229
0x22A

40

0x225

Instances

30
Bits

40 50 60

0x22E Bytes Graph 0x22E Bytes Graph
0x2A8 0x248
0x2A8 250 F 0x2A8 250 T T
0x2A9 200 0x2A9 200 | . "
0x2AA 3 0x2AA 0 e
0x2AC 3 1s0f 0x2AC 2 150 (,w‘
0x301 s E 0x30L 3
0x302 100 0x302 100 L
0x303 50 0x303 50 !
0%304 0 0x304 0 L
0x305 0 2500 5000 7500 10000 0305 0 2500 5000 7500 10000 12500
0x306 Time 0x306 Time
0x307 P — 0x307 P
0x308 c Save details to file 0 1 2 3 4 6 7 0x308 c Save details to file 0o 1 2 3 4 6 7

Frame IDs: (39 unique ids) Details: Bit Histograph

0x1A6 (L

15000

0x1A8 D

RS 1D: 0x1AC , 12500

0X1AA & 10000

5 7500

gxsgg 2 so00

X

0x226 2500

0:228 0 10 20 30 40 50 60

0x229 Bits

0x22A

0x22E Bytes Graph

0x2A6
0x2A8
0x2A9
0x2AA
0x2AC
0x301
0x302
0x303
0x304
0x305
0x306
0x307
0x308

Value

c Save details tofile 0

250
200
150
100

s0F |

oo

LA

1kl

[1!

I

oL
o

a

1
2500 5000 7500 10000 12500 15000

Time

2 3 4

6 7

Figure 4: Three IDs. Two are obviously correlated.
The bottom seems possibly to subsume the two on top, along with other data.

During the first day’s sniffing, the battery display indicated a 91% charge. The second day showed 90%.

These correspond to 0x5B and 0x5A, respectively. In every frame having ID 224, the first byte is...0x5B on
the first day, and 0x5A on the second. Let’s call it the human-readable battery level. This suggests that 224
is either a message to the display, or a sensor message from the BMS. It seems unlikely that the physical
sensor would report a human-readable value. It is determined that only the penultimate byte of 224 seems
otherwise to change, and it in very sharp, long-held changes among a few values, usually in single-bit changes
(e.g. 0xC to 0x4). This might plausibly be a bitmask for the lights of the display. Could the other six bytes
correspond to the six error values? It’s all reasonable, but by no means guaranteed.

The two analyses above involved sorting by ID and inspecting change among the bytes of that ID’s data

frames. Stepping back, we sort by time, and plot all the IDs, coloring them according to payload value:

Figure 5: (Decimal) IDs over time, colored by payload.

3.2 The GZM48S CAN bus DSSCAW Technical Report #001

How many distinct nodes are responsible for these messages? We noted earlier that the same lower 8
bits show up a few places. Assuming IDs beginning with 1 to be inputs (hence low priority), I hoped to
find a correlation between e.g. 1A8, 1A9, 1AA and 2A8, 2A9, and 2AA. Alas, there is none—but there
most definitely exists one between 1A8, 1A9, 1AA and 228, 229, 22A! This difference of 0x80 is repeated in
5A8, 5A9, 5AA and 628, 629, and 6AA..and in an ephiphany, we reach a new conjecture: the lower seven
bits could be node IDs, in which case 1A8, 228, 2A8, 5A8, 628, and 728 are all a single node, 0x28. This
unification would account for essentially every ID save the 3xx series in just ten nodes. Inspecting the logs,
we do indeed see tight association between e.g. 1A6 and 226, and 2A6 and 326. This interpretation grows
more and more compelling.

13} o oo oo o oo .o . . . oo .

12fe o ©0 0000 0000 0000 O © 00 G00 00000 0000 0000 S O O 0 000 G0 0000 000 O © 0000 ©00000000 © 0000 0000 000 000 000 © 0000 000

1]l f@e® o ocomoe L 0G0 SONIO 00000000000 0000 C000MICE 00 GENG S00 00000 BO WSS

Packets/100 ms
©

e
W —
.

I I
100 120

Time (s)

Figure 6: Wireshark I/O plot of four conjectured nodes.

At this point, we have enough information to consult known higher-level protocols. As mentioned earlier,
the term “NMT” is used once in the manual, copied from the Curtis 1234 error descriptions. This could be
CANopen (which is indeed supported by the Curtis unit), with its Predefined Connection Set:

Message Function code | CAN-ID base | COB-ID parameter index
NMT 0000 000 Not configurable
SYNC 0001 080 1005

EMCY 0001 081-0FF 1014

TIME 0010 100 1012

TPDO; 0011 181-1FF 1800

RPDO, 0100 201-27F 1400

TPDO, 0101 281-2FF 1801

RPDO; 0110 301-37F 1401

TPDOj3 0111 381-3FF 1802

RPDOg 1000 401-47F 1402

TPDO, 1001 481-4FF 1803

RPDOy4 1010 501-57F 1403

TSDO 1011 581-5FF Not configurable
RSDO 1100 601-57F Not configurable
Heartbeat | 1110 701-77F Not configurable

It seems safe to proceed under the assumption that CANopen is in play. We replay the candump log over
a virtual CAN interfaced, and capture it in Wireshark[@], applying its CANopen secondary decoder. The
various frames all decode into reasonable CANopen, and a node table emerges:

Node | TPDO1 | RPDO1 | TPDO2 | RPDO2 | TPDO3 | NMT | TSDO | RSDO
0x26 | 1A6 226 2A6 326 726

0x27 27

0x28 | 1AS8 228 2A8 728 5A8 628
0x29 | 1A9 229 2A9 729 5A9 629
0x2A | 1AA 22A 2AA T2A 5AA 62A

9Use the Linux vcan module.

DSSCAW Technical Report #001

TPDOs 0x2A8, 0x2A9, and 0x2A are responsible for the 4-byte messages. All other messages, save the
single-byte 0x7xx-series heartbeats, are 8 bytes. It seems reasonable to assume that these three nodes—
0x28, 0x29, and 0x2A—are a logical group, and indeed they are almost certainly the three blade controllers
(see the right side of Figure 2). Their activity takes a distinctly different form when the blades are engaged,
and the SDO messages to and from these nodes are (sometimes, but only) sent immediately prior to blades
turning on. Analysis of the NMT state machine and the 7xx messages confirms this, and further implies
0x26 and 0x27 to be a group. It’s almost certain that these are the Curtis drive controllers, and examining
the changes in TPDOs 0x1A6 and 0x2A6 confirms a strong correlation with mower movement.

The changes in 0x224, as noted earlier, seem to cover the gamut of state changes, and can be put on an
isomorphism with display changes. The first two bytes are a human readable battery level. The seventh byte
is a bitmask corresponding to the top row’s icons (save the key icon, and with a sole bit to choose between
the mutually exclusive low and high speed glyphs). The other six bytes probably carry the six error codes.
The two hour counts correspond to four bytes of the clock signal at node 0x06.

If the motor controllers are to be driven through CAN in their current configuration, I suspect that it
would be via RPDO 226 and 326, but I cannot isolate a control signal on these IDs. Nor can I correlate any
other signal to the drive levers. Examining its manual, the Curtis 1234 does not appear, by default, to use
CAN bus as an input, but rather the various throttle and brake pot inputs. CAN is instead being used to
report motor state, including level and temperature. The Curtis 1234 supports uploading firmware written
in Vehicle Control Language, and it is probable that CAN could be used as a control input with a custom
firmware. It would likely be easier, however, to drive the input lines from the Archer system. It does seem
likely that the blade controllers are set up for driving with CAN, due to the exchange of SDO messages. As
noted above, however, this does not always happen upon blade engagement.

4 Replay experiments

I injected CAN frames via two different strategies: bulk replay of recorded traffic, and surgical injection of
packets constructed according to the analysis above.

Traffic sniffed while standing on the pressure sensor, replayed while not standing on the sensor, did indeed
cause the display to illuminate the stand light. The light flickered, presumably due to contradictory messages
being interleaved with the replayed messages. At no time did the mower begin moving, despite the traffic
being sniffed while moving. This is almost certainly due to the KSI system being hard-wired to the motor
controllers (it has distinct wired inputs), and said controllers synthesizing these values on 224 outputs. I
then dropped all but the 224 messages from this traffic, and repeated the experiment. The same results were
seen.

Traffic sniffed while not standing on the pressure sensor was then replayed while standing on the mower
with the levers in park, leading to the sensor light flickering. This was again due to RPDO 224. T began
driving the mower forward, and played this traffic back once more. The light flickered, and the mower
stuttered, but no recoverable controller fault (as occurs when one jumps off the stand while moving) was
seen. This latter lends credence to the idea that the display is controlled by CAN, but the motor controls
are not. The stuttering of the mower, however, would seem to suggest otherwise. It is possible that we were
momentarily stopping the motor, but that ought have led to a safety fault; I instead believe that dumping
so much traffic onto the CAN bus (the messages were injected in a tight loop) simply upset the controllers.
Certainly I was unable to cause a sedentary mower to move, however stutteringly.

Sending enough traffic, of any kind, eventually led to non-recoverable controller faults, likely due to
drowning out of important messages (including heartbeats).

5 Towards control

The following facts are now known:

e CAN frames can be sniffed from the DE-9 port, and these CAN frames can be consistently correlated
with mower operation.

DSSCAW Technical Report #001

e CAN frames injected via the DE-9 port can result in changes to the mower’s display, including turning
on lights indicating control engagement. Of the four lights necessary to trigger the mower’s “GQO” light,
all four (stand pressure, left control, right control, blades enabled) can be illuminated by CAN frame
injection.

e CAN frames injected via the DE-9 port can result in degraded mower, functionality, including disabling
blades and retarding movement.

e CAN frames injected via the DE-9 port can fault the mower, requiring a restart. A restart requires at
least 5 seconds.

No concrete mapping of CAN traffic to desired mower behavior has been found. That doesn’t mean that
none exists. Aside from simply overlooking a signal, the following are all possible:

e Contradictory messages—message contention— could be invalidating our constructed controls. This
would mean I’ve misidentified an input as an output, and that the Curtis controllers have been repro-
grammed for CAN control, in a way that would seem to require custom VCL. If this is true, working
around the issue would require either disconnecting the true CAN input (electrically or via DoS), tim-
ing our messages to arrive precisely after that input (plus luck—it’s in no way certain that this would
result in deired behavior), or invalidating each broadcasted input.

o My injected messages are being filtered from the controllers (but not from the display, which we can
affect).

e CAN controls are checked against the electromechanical inputs, and ignored if they’re clearly incom-
patible (very likely for e.g. safety systems).

If my conjectured control messages are indeed correct (I do not think that they are; I believe them to be
outputs, not inputs), and their failure is due to contention, it ought be possible to disconnect the conflicting
controls, and see them work. I do not expect this line to succeed after reading the Curtis manuals and
running my tests.

I see no means for our messages to be filtered from the drive controllers, but not filtered from the display.
This would seem to require two distinct CAN buses, with a filtering bridge in the middle. I see no indication
of such a device, and again, this is predicated on the controls being correct in the first place. If they are
correct, but being checked against electomechanical inputs, it seems unlikely that the supposed CAN controls
would work in the absence of said inputs, meaning they’d need be controlled in any case.

I thus recommend that efforts to drive the GZMA48S focus on using the Curtis controllers’ non-CAN
inputs. These interfaces are fully documented, and known to work. If driven by the Archer stack, there
exist no other controls to compete with our operation. A less appealing option is to write new VCL for
the controllers, and upload it using a 1311 programmer, an operation too far removed from my skill set for
meaningful comment.

On the plus side, should such control be put into place, the sensor signals emitted in the CAN network
now seem well understood, and can be used by our system.

6 Questions

e The PCAN-USB manual claims that soldering is required to effect the necessary 1202 termination for
Hi-Speed CAN (ISO 11898-2), or a PCAN-TJA1054 bus converter for Lo-Speed CAN (ISO 11898-3)[2].
Neither of these options were used. The PCAN appeared to work fine with the network at 125kbit/s.
Is this correct, or are we missing something?

e The created network device’s MTU is 16, not the 72 expected from FD-capable CAN. Are we possibly

missing CAN FD messages? It might be best to test with lhttps://WWW.peak-system.com/PCAN-l
iew.242.0.html].

e [did not attempt to scan or otherwise interrogate the ECUs using e.g. the ODB-II diagnostic protocol.
Might there be things waiting, listening?

REFERENCES DSSCAW Technical Report #001

References

[1] ISO/TC 22/SC 31. Road vehicles—Controller area network (CAN)—Part 2: High-speed medium access
ungt. Tech. rep. ISO 11898-2:2016. Version 2. 2016-12. 25 pp.

[2] ISO/TC 22/SC 31. Road vehicles—Controller area network (CAN)—Part 3: Low-speed, fault-tolerant,
medium-dependent interface. Tech. rep. ISO 11898-3:2006. 2006-06. 25 pp.

[3] CAN in Automation (CiA). Cabling and Connector Pin Assignment. Tech. rep. CiA 303-1. 2017-09-18.
24 pp.

[4] CAN in Automation (CiA). CANopen application layer and communication profile. Tech. rep. CiA 301.
2011-02-21. 158 pp.

[5] Kyong-Tak Cho and Kang G. Shin. “Error Handling of In-vehicle Networks Makes Them Vulnerable”.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS
"16. Vienna, Austria: ACM, 2016, pp. 1044-1055. 1SBN: 978-1-4503-4139-4. DOI: 10.1145/2976749.
2978302. URL: http://doi.acm.org/10.1145/2976749.2978302.

[6] Greenworks Commercial. Stand On Mower 2501802 (Model No. GZM48S) Owner’s Manual. Green-
works Commercial Tools, PO Box 1238, Mooresville, NC 28115, 2017-07-20. 47 pp.

[7] Greenworks Commercial. Stand On Mower 2501802 (Model No. GZM48S) Parts Manual. Greenworks
Commercial Tools, PO Box 1238, Mooresville, NC 28115, 2017. 38 pp.

[8] Curtis Instruments, Inc. 1232, 1234, 1236, and 1238 AC Induction Motor Controllers. 37022. 2011-03-
01. 134 pp. URL: http://etukusa.com/wp-content/uploads/2015/12/Curtis-Controller-full-
manual-1.pdf.

[9] PEAK-System Technik GmbH. PCAN-USB CAN Interface for USB User Manual. Version 2.6.0. Otto-
Roehm-Strasse 69, 64293 Darmstadt, Germany, 2019-03-05. 33 pp.

[10] Kvaser. CAN Bus Error Handling. URL: https://www.kvaser.com/about-can/the-can-protocol/
can-error-handling/.

[11] Linuz-CAN. https://github.com/linux-can/can-utils. Version v2018.02.0. 2018-02-11.

[12] Charlie Miller and Chris Valasek. CAN Message Injection: OG Dynamite Edition. Tech. rep. 2016-06-
28. 29 pp.

[13] NXP. PCA82C251 CAN transceiver for 24 V systems data sheet. Version .04. 2011-08-25. 17 pp.

[14] Philips. STA1000 Stand-alone CAN controller data sheet. IC18. 2000-01-04. 68 pp.

[15] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA Workshop on Open
Source Software. 2009.

[16] SavvyCAN. https://github.com/c0l1in80/SavvyCAN. 2019-03-18.

[17) Meenanath Taralkar. Computation of CAN Bit Timing Parameters Simplified.

[18] Wireshark. code.wireshark.org. Version 2.6.8-1.

10

https://doi.org/10.1145/2976749.2978302
https://doi.org/10.1145/2976749.2978302
http://doi.acm.org/10.1145/2976749.2978302
http://etukusa.com/wp-content/uploads/2015/12/Curtis-Controller-full-manual-1.pdf
http://etukusa.com/wp-content/uploads/2015/12/Curtis-Controller-full-manual-1.pdf
https://www.kvaser.com/about-can/the-can-protocol/can-error-handling/
https://www.kvaser.com/about-can/the-can-protocol/can-error-handling/
https://github.com/linux-can/can-utils
https://github.com/collin80/SavvyCAN
code.wireshark.org

	Introduction
	Setup
	Host side
	Mower side

	Data and Interpretation
	CAN frames and semantics
	The GZM48S CAN bus

	Replay experiments
	Towards control
	Questions

